

UMWELTERKLÄRUNG 2023

INHALTSVERZEICHNIS

1	Vor	wort	3
2	Bes	chreibung der Schule	4
	2.1	Ausbildung	4
	2.2	Schulstandstandort	6
	2.3	Positionierung im österreichischen Schulsystem	8
	2.4	Leitung/Schulführung aus UMS-Sicht	9
	2.5	Umfeld (Stakeholder)	10
3	lm E	Einklang mit der Umwelt (Umweltpolitik)	11
	3.1	Umweltleitlinie	11
	3.2	Was haben wir erreicht?	13
	3.3	Was nehmen wir uns vor?	21
	3.4	Umweltmanagementsystem	22
4	Um	weltauswirkungen	23
	4.1	Indirekte Umweltauswirkungen	23
	4.2	Direkte Umweltauswirkungen	24
	4.3	Bewertung der Umweltauswirkungen	26
	4.4	Maßnahmen zur Verbesserung der Umweltauswirkungen	27
	4.5	Kennzahlen und Kernindikatoren	29
5	Gült	tigkeitserklärung und Zertifikate	33
۾	Kon	takt	27

1 Vorwort

Die Umwelterklärung der Priv. HTL für Lebensmitteltechnologie wurde vom Erlangen der Zertifizierung nach EMAS III (2014) bis zur Erklärung 2016 gemeinsam mit der HTBL Hollabrunn verfasst. 2017 wurde erstmals eine eigenständige Umwelterklärung im Rahmen einer Diplomarbeit verfasst. Auch die Aktualisierungen und Überarbeitungen wurden und werden von Schülerinnen und Schülern des Hauses in Zusammenarbeit mit der Schulleitung durchgeführt.

Der Schwerpunkt unserer Ausbildung liegt auf der Lebensmittelsicherheit - damit ist die Idee, die einem Managementsystem zugrunde liegt, Ausbildungsinhalt für alle unsere Schülerinnen und Schüler. Das Vorleben eines Managementsystems am allgemein akzeptierten Beispiel eines Umweltmanagementsystems ist daher nicht nur Erziehungsarbeit im Hinblick auf umweltbewusstes, ressourcenschonendes und sicherheitsbedachtes Handeln, es ist auch praktisches Erleben eines Lehrplanzieles.

Alle Mitarbeiterinnen und Mitarbeiter der Priv. HTL für Lebensmitteltechnologie bekennen sich zur Umweltorientierung ihres gesamten Tätigkeitsbereiches. Wir bemühen uns um Minimierung der verwendeten Ressourcen ebenso wie um die Reduktion der produzierten Abfallmengen, aber auch um weitgehende Vermeidung besonders bedenklicher Abfälle, soweit das Unterrichtsziel dadurch nicht gefährdet ist. Größtmögliche Sicherheit aller handelnden Personen ist uns oberste Prämisse.

Die Einbindung der Schülerinnen und Schüler in diesen Prozess ist uns vom ersten Jahr ihrer Ausbildung an ein Anliegen: In automatisierten Abläufen schulen die jeweiligen Schulsprecher alle Jahrgänge im richtigen Verhalten eines Alarmfalles. Von den aktuellen Diplomandinnen und Diplomanden aus dem UMS-Bereich wird jährlich für den ersten Jahrgang eine umfangreiche Einführung in das UMS-System gehalten.

Umweltbeauftragte in allen Jahrgängen sorgen für die Einhaltung der entsprechenden Verhaltensregeln.

Unsere Umweltziele realisieren wir unter anderem in Zusammenarbeit mit Diplomarbeiten.

Es ist unser Bestreben, das Umweltbewusstsein aller unserer Schülerinnen und Schüler zu formen und unsere Umweltgebarung kontinuierlich zu verbessern.

DI Gottfried Krottendorfer Schulleiter der Priv. HTL für Lebensmitteltechnologie

2 Beschreibung der Schule

2.1 Ausbildung

Die Priv. HTL für Lebensmitteltechnologie bietet eine einzigartige Ausbildung, die in dieser Form in Österreich kein zweites Mal vorkommt.

Nach Abschluss der 8. Schulstufe führt die Priv. HTL für Lebensmitteltechnologie in einer 5-jährigen Ausbildung zur allgemeinen Hochschulreife und gleichzeitig zur Befähigung ingenieurmäßiger Tätigkeiten im Bereich Lebensmitteltechnologie.

Während ihrer Ausbildung nach dem Lehrplan Lebensmitteltechnologie-Lebensmittelsicherheit erwerben die Schülerinnen und Schüler Kompetenzen in folgenden Bereichen:

- Chemie und Analytik
- Mikrobiologie, Biologie und Hygiene
- Sensorik
- Lebensmitteltechnologie
- Lebensmittelsicherheit und Qualitätsmanagement
- Angewandte Betriebswirtschaft

sowie praktische Fähigkeiten in der:

- Lebensmittelerzeugung
- Lebensmittelkontrolle

Das Arbeiten in den chemischen und mikrobiologischen Laboratorien sowie im Technologikum dominiert die fünf Jahre des Schulgeschehens.

Abgesehen von der fachlichen Zielrichtung strebt die Ausbildung auch Allgemeinbildung an sowie wichtige Fähigkeiten, die im modernen Berufswesen eine große Rolle

Seite 4

spielen – wie etwa Kommunikationsstärke, zeitgemäße fremdsprachliche Fertigkeiten und eine bewegungsorientierte Lebensführung. Alles in allem: Die umfassende Persönlichkeitsentwicklung der Schülerinnen und Schüler ist ein zentrales Anliegen.

Die Ausbildung schließt mit der Reife- und Diplomprüfung ab, die auch den Zugang zu einer Fachhochschule oder einer Universität ermöglicht. Nach 3-jähriger facheinschlägiger Berufspraxis kann die Qualifikationsbezeichnung "Ingenieur" eingereicht werden. Dieser Titel wurde mit dem Ingenieursgesetz vom April 2017 gegenüber der vorherigen Standesbezeichnung international aufgewertet. Er rangiert auf dem NQR-Level 6, also auf gleicher Stufe wie der akademische Abschluss "Bachelor".

Schon während der Ausbildung können die Schülerinnen und Schüler die Prüfung zur Qualitätsmanagerin bzw. zum Qualitätsmanager (Herbstrith Management Consulting GmbH) erwerben. Die Prüfung zur IFS-Managerin bzw. zum IFS-Manager (WIFI) ist fixer Bestandteil der Ausbildung. Durch die vorgeschriebenen acht Wochen Pflichtpraktikum, die bis Anfang des 5. Jahrganges absolviert werden müssen, kommen die Auszubildenden bereits sehr früh mit diversen Unternehmen in Berührung und können so erste Kontakte knüpfen.

Traditionelles Freispringen nach der Reife- und Diplomprüfung

2.2 Schulstandstandort

Schulgebäude der Priv. HTL für Lebensmitteltechnologie

Die Priv. HTL für Lebensmitteltechnologie liegt etwa 2 km von der Abfahrt Hollabrunn Mitte der Weinviertler Straße B303 entfernt in der Schulstadt Hollabrunn. Das Gebäude ist mit der HTBL Hollabrunn durch einen Verbindungsgang verbunden. Ressourcen der HTBL wie EDV-Räume, Sporteinrichtungen, WLAN und ähnliches werden entgeltlich mitgenutzt. Für den Unterricht in Werkstätte und Produktionstechnik werden teilweise angemietete Räumlichkeiten im benachbarten Studentenheim sowie Werkstätten der Berufsschule für Fleischer verwendet.

Hollabrunn im Zentrum des Weinviertels (Google Maps)

Verkehrsanbindung

Der Bahnhof befindet sich ca. fünf Minuten Gehweg entfernt, Busse halten entweder direkt vor der Schule oder beim eben genannten Bahnhof. Für die Anfahrt mit dem PKW stehen genügend Parkplätze zur Verfügung. Für diejenigen Schülerinnen und Schüler, die während der Woche im angrenzenden Studentenheim der Stadt Hollabrunn wohnen, ermöglichen eigene Buslinien die An- und Abreise.

Aktuelle Daten zum Standort

Lehrer/innen: 28, davon 8 in Mitverwendung

Nichtlehrer-Personal: 5

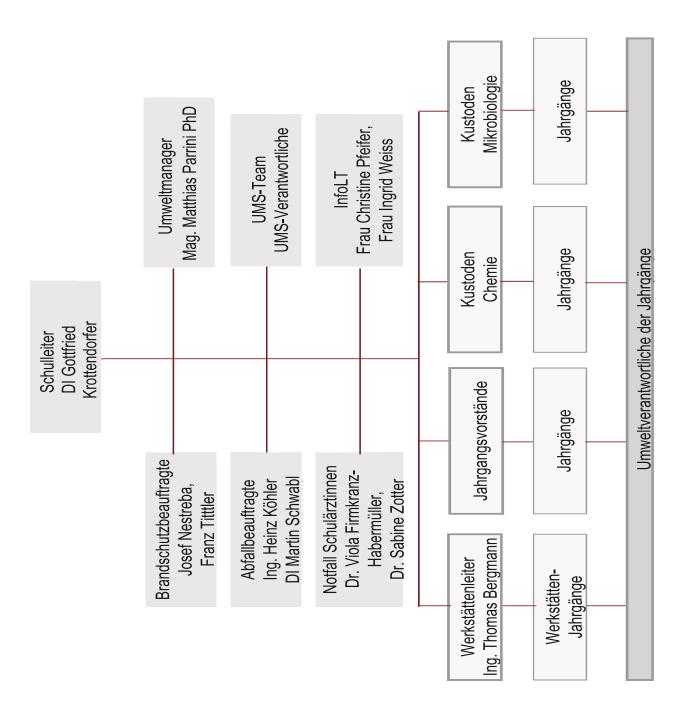
Schüler/innen: 159

Mitglieder des Lehrerkollegiums

2.3 Positionierung im österreichischen Schulsystem

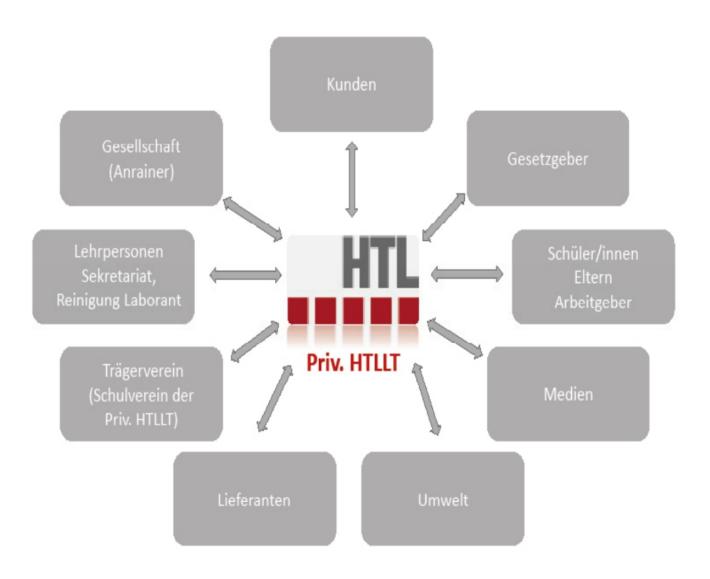
Die Priv. HTL für Lebensmitteltechnologie ist eine Privatschule mit Öffentlichkeitsrecht.

Öffentlichkeitsrecht:

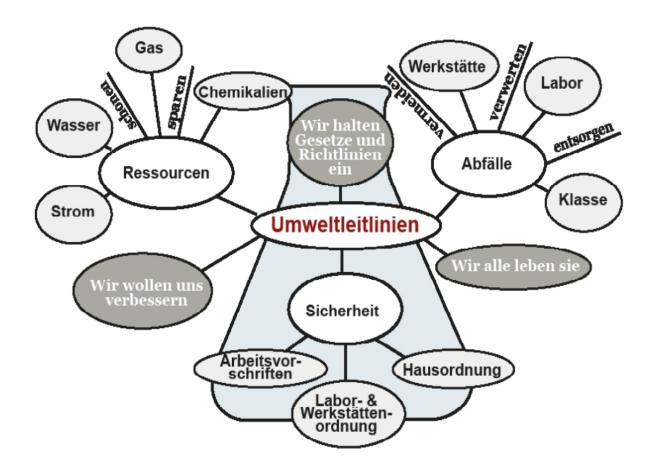

In pädagogischen Belangen untersteht die Schule der Bildungsdirektion. Der derzeit gültige Lehrplan wurde 2015 vom BMBWF verordnet.

Privatschule:

Träger der Schule ist der "Verein zur Erhaltung und Förderung der Priv. HTL für Lebensmitteltechnologie" mit Mitgliedern aus der Stadtgemeinde Hollabrunn, dem Lebensmittelgewerbe sowie der Lebensmittelindustrie. Die Finanzierung der Schule erfolgt durch das Schulgeld der Schülerinnen und Schüler sowie durch Unterstützung von Partnern. Der Bund subventioniert die Lehrpersonen.



2.4 Leitung/Schulführung aus UMS-Sicht


2.5 Umfeld (Stakeholder)

3 Im Einklang mit der Umwelt (Umweltpolitik)

3.1 Umweltleitlinie

Wir vermitteln unseren Schülerinnen und Schülern in umweltrelevanten Themen den Stand der Technik und öffnen den Blick auf zukünftige Entwicklungen.

Ressourcen

Ausgehend vom Umweltgedanken im Leitbild unserer Schule stehen wir für ökologisch rücksichtsvollen Umgang mit Ressourcen. Die zur Verfügung stehenden Ressourcen nutzen wir in Verantwortung für Umwelt und Individuen.

Abfälle

Abfallvermeidung und stoffliche Verwertung durch Recycling sind an unserer Schule gelebte Praxis (zukunftsorientiertes Handlungsprinzip).

W

Sicherheit und Rechtkonformität

Wir leben den Schulalltag im Einklang mit den geltenden umweltrechtlichen Anforderungen und internen Richtlinien zur Gewährleistung der Sicherheit.

Wir wollen uns verbessern

Wir passen unser UMS laufend an neue Herausforderungen an und versuchen so, uns in allen Belangen des Umweltschutzes ständig zu verbessern.

Wir alle leben unsere Umweltleitlinien

Am umweltrelevanten Handeln der Schulgemeinschaft zeigen wir öffentlich die feste Absicht diese Umweltlinien mit Leben zu erfüllen.

Gut geschützt in allen Bereichen des praktischen Unterrichts

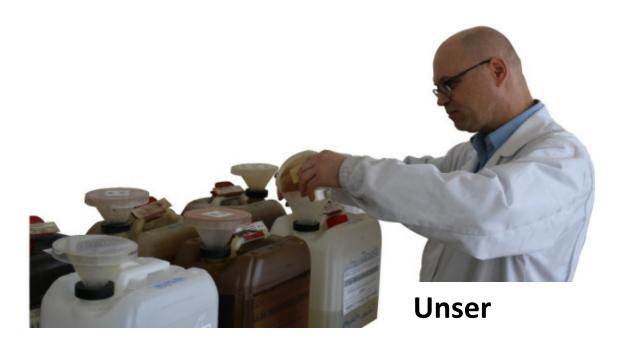
3.2 Was haben wir erreicht?

- a) Recycling und Abfallwirtschaftskonzept für den Bereich der chemischen Laboratorien
- b) Dekontaminierungs- und Entsorgungskonzept für den Bereich der (mikro-)biologischen Laboratorien
- c) Erfassung und Klassifizierung aller verwendeten Chemikalien (Chemikalienkataster, Sicherheitsdatenblätter)
- d) Notfallplan mit Schulungskonzept
- e) Konzept kontinuierlicher Schulungen und Bewusstseinsbildungen
- f) Kontinuierlicher Verbesserungsprozess
- a) Integriertes Recycling- und Abfallwirtschafts-Konzept (I.R.A.K)

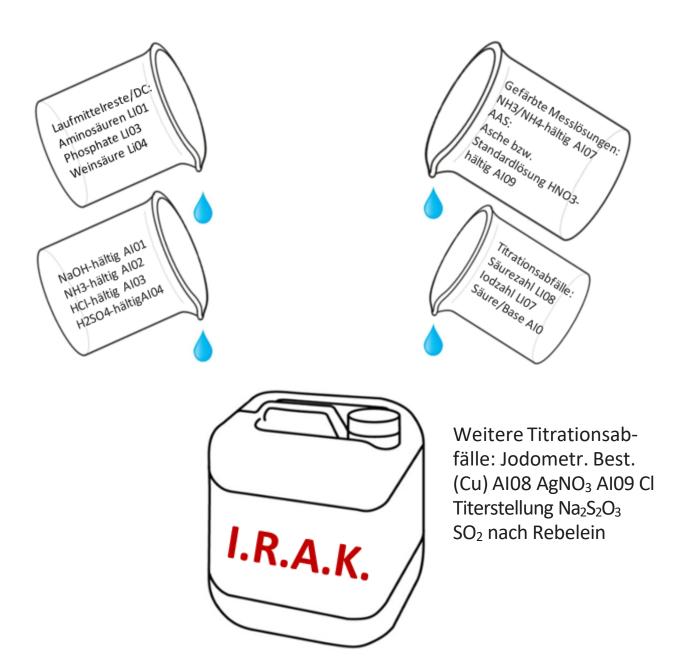
I.R.A.K-Ziele:

Verringerung der Umweltbelastung

Recycling von Lösungsmitteln


Mengenminimierung von entsorgungspflichtigen Abfällen und damit der Entsorgungskosten

I.R.A.K.-Realisierung:


- Einteilung der anfallenden Laborabfälle auf Grund ihrer Zusammensetzung in unterschiedliche Stoffkategorien.
- Sammeln aller Laborabfälle, getrennt nach ihren zugeteilten Stoffkategorien während des Laborunterrichtes.
- Entwicklung von Arbeitstechniken, die es erlauben, einige im Sammelsystem gewonnene Stoffkategorien so aufzuarbeiten, dass sie ohne Umweltrelevanz über das Kanalsystem entsorgt werden können. Es dürfen nur neutrale Abwässer über das Kanalsystem entsorgt werden. (Eine entsprechende behördliche Genehmigung liegt vor)
- Organisation eines periodischen Lösungsmittelrecyclings.

Integriertes
Recycling und
AbfallwirtschaftsKonzept

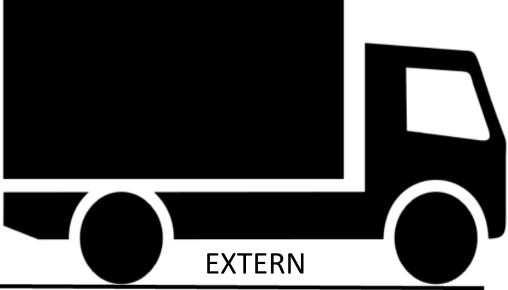
Viele Laborabfälle bereiten wir in unserem eigens dafür gebauten Abfallcontainer auf, um sie umweltschonend und kostengünstig zu entsorgen.

Lösungsmittelabfälle:

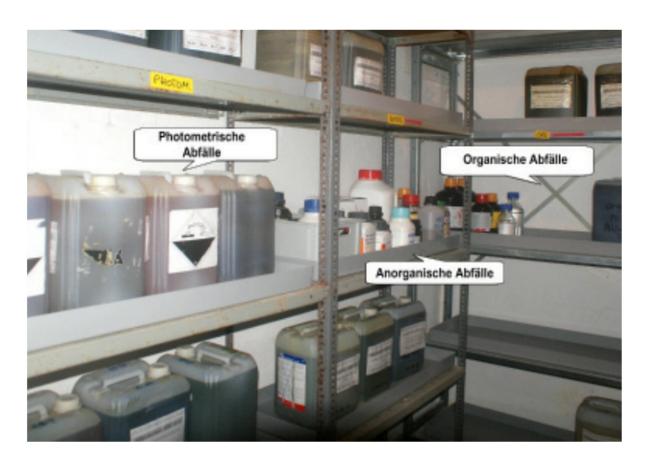
Diethylether LR33

Hexan LR 24IH

Petroleumbenzin LR24


Titrationsabfall +

Verseifungszahl LR18


Einige Substanzen wie z.B. Lösungsmittel können sogar recycelt und so bis zu 100-mal wiederverwendet werden.

Externe Firmen holen verbleibende Abfälle ab und entsorgen diese.

ht//t

Laborabfälle vor Abholung

- b) Dekontaminierungs- und Entsorgungskonzept für den Bereich der mikrobiologischen Laboratorien
 - Restentleerte Gebinde werden im Restmüll entsorgt.
 - Biokontaminierte Abfälle werden in den Autoklaven unschädlich gemacht und anschließend entsorgt.
 - Recycling ist nicht möglich.
- c) Erfassung und Klassifizierung aller verwendeten Chemikalien

Stoffname	Hersteller / Lieferant	ID - Nummer	SDB - Datum	Lagerort		(2)		\Diamond		①		<u>(1)</u>	SDB - Link
3,3" - Dimethoxybenzindin (o - Dianisidin)	Acros Organics	407890050	01.05.2012	Giftschrank Laborant	Nicht	Nicht	Nicht	Nicht	Nicht	Gef	Gef	Nicht	zum Datenblatt von 3,3" - Dimethoxybenzindin (o - Dianisidin) (407890050).
1 - Butanol	Merck KGaA	101990	07.01.16	LöMi - Schrank	Gef	Nicht	Gef	Nicht	Nicht	Gef	Nicht	Nicht	zum Datenblatt von 1 - Butanol (101990)
1 - Decanol	Merck KGaA	803463	04.02.15	LöMi - Schrank	Nicht	Nicht	Nicht	Nicht	Nicht	Ach	Nicht	Ach	zum Datenblatt von 1 - Decanol (803463)
1 - Propanol	Merck KGaA	100997	04.09.2015	LöMi - Schrank, LöMi - Keller	Gef	Nicht	Gef	Nicht	Nicht	Gef	Nicht	Nicht	zum Datenblatt von 1 - Propanol (100997)
1 - Propanol	Roth	6776	30.03.15	LöMi - Schrank	Gef	Nicht	Gef	Nicht	Nicht	Gef	Nicht	Nicht	zum Datenblatt von 1 - Propanol (6776)
1,2,5,8 - Tetrahydroxyanthrachinon (Chinalizarin)	Sigma	Q2763	29.03.2013	Laborant Regal groß	Nicht	Nicht	Nicht	Nicht	Nicht	Ach	Nicht	Ach	zum Datenblatt von 1.2.5.8 - Tetrahydroxyanthrachinon (Chinalizarin) (O2763)
2 - Butanol	Merck KGaA	109630	06.01.16	LöMi - Schrank	Ach	Nicht	Nicht	Nicht	Nicht	Ach	Nicht	Nicht	zum Datenblatt von 2 - Butanol (109630)
2 - Methyl - 2 - butanol (tert - Amylalkohol)	Sigma Aldrich (Fluka)	66000	29.10.2012	LöMi - Schrank	Gef	Nicht	Nicht	Nicht	Nicht	Gef	Nicht	Nicht	zum Datenblatt von 2 - Methyl - 2 - butanol (tert - Amylalkohol) (66000)
2 - Propanol	VWR	20842.330	30.07.2014	LöMi - Schrank	Gef	Nicht	Nicht	Nicht	Nicht	Gef	Nicht	Nicht	zum Datenblatt von 2 - Propanol (20842,330)
2 - Propanol	Merck KGaA	109634	19.11.2015	LöMi - Schrank	Gef	Nicht	Nicht	Nicht	Nicht	Gef	Nicht	Nicht	zum Datenblatt von 2 - Propanol (109634)
2 - Propanol	Roth	6752	27.11.15	LöMi - Schrank	Gef	Nicht	Nicht	Nicht	Nicht	Gef	Nicht	Nicht	zum Datenblatt von 2 - Propanol (6752)
2 - Thiobarbitursäure	Merck KGaA	108180	15.10.2012	Laborant Regal groß	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	zum Datenblatt von 2 - Thiobarbitursäure (108180)
2,4,6 - Trimethylpyridin (Colidin)	Merck KGaA	822267	08.07.2014	Laborant Regal groß	Ach	Nicht	Nicht	Nicht	Nicht	Ach	Nicht	Nicht	zum Datenblatt von 2 4 6 - Trimethylpyridin (Colidin) (822267)
2,6 - Di - tert - butyl - 4 - methylphenol	Merck KGaA	822021	28.04.2015	Laborant Regal klein	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	Ach	zum Datenblatt von 2,6 - Di - tert - butvl - 4 - methylphenol (822021)
4 - (Dimethylamino) - benzaldehyd	Merck KGaA	803057	04.09.2013	Laborant Regal klein	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	zum Datenblatt von 4 - (Dimethylamino) - benzaldehyd (803057)
4 - (Methylamino) - phenolsulfat Photo-Rex®	Merck KGaA	107299	05.11.2010	Giftschrank Laborant	Nicht	Nicht	Nicht	Nicht	Nicht	Gef	Gef	Gef	zum Datenblatt von 4 - (Methylamino) - phenolsulfat Photo-Rex® (107299)
4 - Hydroxy - Benzoesäure - aethylester	Sigma Aldrich (Fluka)	54660	12.05.2014	Laborant Regal groß	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	zum Datenhlatt von 4 - Hydroxy - Benzoesäure - aethylester (54660)
4 - Hydroxy - Benzoesäure - butylester	Aldrich (Fluka)	54680	13.11.2012	Laborant Regal groß	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	zum Datenblatt von 4 - Hydroxy - Benzoesäure - hutylester (54680)
4 - Hydroxy - Benzoesäure - methylester	Sigma Aldrich (Fluka)	54750	18.06.2014	Laborant Regal groß	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	zum Datenblatt von 4 - Hydroxy - Benzoesäure - methylester (54750)
4 - Hydroxy - benzoesäure - propylester	Sigma Aldrich (Fluka)	54790	14.05.2014	Laborant Regal groß	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	Nicht	zum Datenblatt von 4 - Hydroxy - benzoesäure - propylester (54790)
4 - Hydroxybenzoesäure	Merck KGaA	821814	19.02.2013	Laborant Regal groß	Nicht	Nicht	Nicht	Nicht	Nicht	Ach	Nicht	Nicht	zum Datenblatt von 4 - Hydroxybenzoesäure (821814)
5 - Hydroxymethyl - 2 - furaldehyde (HMF)	Sigma Aldrich (Fluka)	55690	23.05.2012	Kühlschrank Laborant	Nicht	Nicht	Nicht	Nicht	Nicht	Gef	Nicht	Gef	zum Datenblatt von 5 - Hydroxymethyl - 2 - furaldehyde (HMF) (55690)
5 - Sulfosalicylsäure - Dihydrat	Merck KGaA	800691	15.01.2014	Laborant Regal klein	Nicht	Nicht	Nicht	Nicht	Nicht	Ach	Nicht	Nicht	zum Datenblatt von 5 - Sulfosalicvisäure - Dihydrat (800691)

(Auszug aus dem Chemikalienkataster, Sicherheitsdatenblätter)

- d) Notfallplan mit Schulungskonzept
 - Jährlich ein angekündigter und ein unangekündigter Räumungsalarm Jährliche Schulung aller Klassen bezüglich des Räumungsverhaltens durch die Schülervertretung
 - Notfallmappen in den Klassen
 - Informationskonzept im Räumungsalarmfall

e) Konzept kontinuierlicher Schulungen und Bewusstseinsbildungen

- Schulung der ersten Jahrgänge durch das jeweilige UMS-Diplomarbeitsteam (Inhalt und Bedeutung des UMS)
- Bewusstseinsbildende Laborübungen
- Ständige pädagogische Erziehungsarbeit
- Räumungsschulung siehe Punkt d)
- Schulung der Umweltverantwortlichen in den Klassen

f) Kontinuierlicher Verbesserungsprozess

Aus Anregungen von Schülerinnen und Schülern, Lehrerinnen und Lehrern, dem Umweltteam sowie der Schulleitung resultieren jährlich Umweltziele, die überwiegend im Rahmen von Diplomarbeiten im Zusammenhang mit dem Umweltteam realisiert werden.

Erfüllte Umweltziele seit 2010:

- Erfassung aller im Unterricht verwendeten Chemikalien in einem Stoffkataster
- Potentialanalyse zur Heizkostenreduktion
- Klare transparente Struktur des UMS-Systems sicherstellen
- Erstellung von Betriebsanweisungen für umweltrelevante Chemikalien
- Errichtung eines Abfallcontainers zur externen Lagerung und Aufbereitung von chemischen Abfällen
- Optimierung des Nährbodeneinsatzes in der Mikrobiologie
- Potentialanalyse zur Heizkostenreduktion und daraus folgend schüler/innenbasierte Raumtemperaturregelung in den Klassenräumen
- Erweiterung des Notfallplans
- Erstellung eines Konzeptes zur CO₂-Kompensation der Priv. HTL für Lebensmitteltechnologie.
- Erstellung eines Schulungsvideo für die Gewährleistung der Laborsicherheit.

Das Umweltziel von 2012: Unser Abfallcontainer. Lösungsmittelfreie Abfälle aus den chemischen Laboratorien werden in diesem Recyclingcontainer zwischengelagert und sachgerecht aufgearbeitet.

3.2.1 Umweltprogramme

Umweltprogramm 2020 – 2022

Nr.	Datum	Thema / Ziel	Maßnahme	Wer? (Abteilungs- verantwortung)	Termin	Status: offen / in Arbeit / erledigt / überfällig	Anmerkung
1		Erstellung eines Schulungsvideos über das sichere Verhalten im chemischen Labor	Teambildung und Verantwortlichkeiten festlegen Erstellung eines Drehbuches Erstellung des Videos	Parrini	01.07.2022	erledigt	Gesamtaufgabe im Rahmen einer Diplomarbeit
2	22.01.2020	Erabeitung eines Konzepts, um den CO2-Ausstoß der Priv. HTL für Lebensmitteltechnologie auszugleichen	Recherche und Ideensammlung Ausarbeitung eines Konzepts Kalkulation	Parrini	01.07.2022	erledigt	Gesamtaufgabe im Rahmen einer Diplomarbeit

3.3 Was nehmen wir uns vor?

Umweltprogramm 2022 – 2024

Nr.	Datum	Thema / Ziel	Maßnahme	Wer? (Abteilungs- verantwortung)	Termin	Status: offen / in Arbeit / erledigt / überfällig	Anmerkung
1	08.04.2022	I ahamamittakaahmalania und	Erstellung und Auswertung eines	Parrini	30.06.2024	I in Arbeit	Gesamtaufgabe im Rahmen einer Diplomarbeit
2	08.04.2019		Recherche Durchführung der Analysen Beurteilung der Trinkwasserqualität	Parrini	30.06.2024	l in Arbeit	Gesamtaufgabe im Rahmen einer Diplomarbeit

3.4 Umweltmanagementsystem

Seit 2010 ist die Priv. HTL für Lebensmitteltechnologie nach der weltweit gültigen Umweltmanagement- Norm ISO 14001:2015 zertifiziert und gehört damit ebenso wie die HTBL Hollabrunn zu den ersten zertifizierten Schulen Niederösterreichs. Seit 2014 ist die Priv. HTL für Lebensmitteltechnologie gemeinsam mit der HTBL EMAS zertifiziert und hat seit letztem Jahr eine eigene Nummer: REG.NO.AT-000705.

Der Zertifizierungsvorgang war mit großem Zeitaufwand und viel Engagement eines aus den Kreisen der Mitarbeiter gebildeten UMS-Teams verbunden und wurde durch verschiedenste Diplomarbeiten unterstützt. Es brachte unter anderem eine Erfassung und Bereinigung aller umweltrelevanten Substanzen sowie eine deutliche Erhöhung des Umweltbewusstseins von MitarbeiterInnen und SchülerInnen.

Da der seit 2015 verordnete Lehrplan Lebensmitteltechnologie – Lebensmittelsicherheit Managementsysteme als Ausbildungsschwerpunkt hat, ist es für die Schülerinnen

und Schüler von essentieller Bedeutung, den Umgang mit einem UMS aktiv mitzuerleben und so in ein Tätigkeitsfeld zu schnuppern, das für viele das zukünftige Berufsfeld sein wird.

Alle Mitarbeiterinnen und Mitarbeiter, Schülerinnen und Schüler bemühen sich stets das Umweltmanagementsystem aufrechtzuerhalten und zu verbessern.

4 Umweltauswirkungen

4.1 Indirekte Umweltauswirkungen

Beschaffung

Wir als Schule wollen nur mit umweltfreundlichen Partnern Handel betreiben. Wir wählen unsere Lieferanten daher nach Möglichkeit aufgrund eines vorhandenen ISO 14001-Zertifikats und/oder EMAS- Zertifikats.

Interne Kommunikation und Umwelt-Schulungen

Ein Umweltmanagementsystem ist nur so gut, wie es von den Mitarbeiterinnen und Mitarbeiter mitgetragen wird. Das erfordert Kommunikation und Motivation:

- Personalschulungen
- Aushänge in den Klassen ("Greenboard")
- Briefkasten für Verbesserungsvorschläge (KVP)
- Wöchentliche Dienstbesprechungen
- Umweltrelevante Informationen am Bildschirm
- Schulungen (UMS-Information, Notfallverhalten)

Externe Kommunikation, Gesellschaft

- Homepage (www.htllt-hollabrunn.ac.at) inkl. Imagevideo
- Instagram (Account: htllthollabrunn)
- Umwelterklärung
- Presseartikel
- Elternbriefe
- Tage der offenen Tür
- Onlinepräsentationen der Schule

Diplomandinnen und Diplomanden

Umweltziele werden durch die Diplomaden und Diplomandinnen durch die von ihnen durchgeführte Diplomarbeit umgesetzt. Außerdem können die Umweltziele den Schülern durch die Diplomanden besser übermittelt werden.

Brandschutz und Notfallmanagement

Notfallmanagement ist ein wichtiger Aspekt in unserem Umweltmanagementsystem, das auf den Schutz von Menschen und Umwelt abzielt:

- Notfallmappen im ganzen Haus
- Schulungen und Übungen über das Verhalten im Räumungsfall
- Praktische Feuerlöscher Übungen
- Erste-Hilfe-Kurse für das Lehrpersonal im zwei Jahres-Rhythmus (100% Ersthelfer)

4.2 Direkte Umweltauswirkungen

Der Großteil der Umweltauswirkungen der Priv. HTL für Lebensmitteltechnologie basiert einerseits auf der Verwendung und Entsorgung von Chemikalien, andererseits auf der für den Betrieb nötigen Energie.

Ressourcen

Zur Beurteilung dieses Aspekts wurden die in den verschiedenen Laboratorien verwendeten Chemikalien herangezogen. Dazu gehören Nährböden, organische und anorganische Chemikalien, Lösungsmittel sowie verschiedenste Reinigungs- bzw Desinfektionsmittel. Weiters wurden diverse Verbrauchsmaterialien für Büro und Klassen berücksichtigt.

Energie

In diese Bewertung fallen vor allem elektrische Energie und Erdgas für den Laborbetrieb. Die Beheizung des Gebäudes erfolgt über die HTBL Hollabrunn mittels Fernwärme.

Hoher elektrischer Energiebedarf entsteht in den mikrobiologischen Laboratorien durch den rundum benötigten Betrieb von Brutschränken, Kühlschränken und Autoklaven, die zur Züchtung, Aufbewahrung und Vernichtung von Bakterien dienen. In diesem Bereich besteht nur geringes Einsparungspotenzial. In den chemischen Laboratorien erfordern chemische Analysen den langfristigen Betrieb von Trockenschränken, Muffelöffnen und Aufschlussbänken sowie fallweise den Betrieb chemischer

Großgeräte. Der Verbrauch von Erdgas hängt überwiegend mit dem Gebrauch der Laborbrenner während der Unterrichtszeiten zusammen.

Wasser und Abwasser

Wasser wird in der Priv. HTL für Lebensmitteltechnologie hauptsächlich im Sanitärbereich und als Kühlwasser chemischen Versuchen benötigt. Das Abwasser wird in den öffentlichen Abwasserkanal eingeleitet.

Boden

Die Außenanlagen der HTBL werden mitgenutzt, somit besitzt unsere Schule keine eigenen Außenflächen. Daher liegt der Flächenverbrauch bei null Prozent.

Abfall

Neben den klassischen Abfällen (Papier, Kunststoff, Restmüll) sind vor allem die Abfälle aus den Laboratorien zu berücksichtigen, deren Minimierung, Vermeidung bzw. Recycling in der Beschreibung des I.R.A.K- Systems dargestellt wurde.

Luft

Hier werden die Absaugungen in den Laboratorien bewertet. Digestorien saugen Dämpfe mit Kleinstmengen an Säuren, Laugen und Lösungsmitteln ab. Die Funktion der Digestorien wird jährlich überprüft.

Lärm

Die Lärmbelastungen durch die Priv. HTL für Lebensmitteltechnologie sind nicht relevant.

Rechtskonformität

Das Rechtsregister wird jährlich durch einen Juristen des Lehrerteams überprüft, für die Einhaltung der behördlichen Auflagen ist die Schulleitung verantwortlich. Es wurden Vorschriften wie z.B. das Schulunterrichtsgesetz geprüft. Die Schulleitung bestätigt, dass die umweltrelevanten Vorschriften eingehalten wurden.

4.3 Bewertung der Umweltauswirkungen

Bewertung der direkten und indirekten Umweltauswirkungen

				Umwelt	auswirl	kungen				
Umweltaspekt e		Energieve rbrauch	Wasserve rbrauch	Flächenve rbrauch		Abwasser emissione n	Sonst. Emissione n (z.B. Lärm)	Bodenver unreinigu ng	Abfal lanfal l	Mittelwer t
Verwaltung	6	4	1	1	1	1	1	1	6	2,44
Fachtheoretischer Unterricht / Klassenräume	oretischer ht / 3 15		1	5	1	1	2	1	12	5,89
Fachpraktischer Unterricht / Werkstätten / Labors	10	5	10	5	4	1	4	4	10	5,89
Infrastruktur / Haustechnik	. 6 1		6	2	1	9	1	6	4	4,67
Beschaffung / Verhalten der Lieferanten	6	5	1	1	10	1	1	3	3	3,44
Umweltkommunika tion intern / Umweltthemen im Unterricht	4	6	6	1	4	4	1	4	9	4,33
Umweltkommunika tion extern	veltkommunika		1	1	1	1	1	1	1	1,67
Mobilität der SchülerInnen / MitarbeiterInnen	lerInnen / 6 12		1	4	12	1	12	6	1	6,11
Mittelwert 6		6,9	3,375	2,5	4,25	2,375	2,875	3,25	5,75	

Bewertung der indirekten Umweltauswirkungen

ns	5	5	10	15	20	25
Schadentsaus wirkung	4	4	8	12	16	20
den	3	3	6	9	12	15
thac wi	2	2	4	6	8	10
S	1	1	2	3	4	5
		1	2	3	4	5
			Eintrittsv	vahrschei	nlichkeit	

Erläuterung der Codierungen:

A = hohes Risiko / hoher Handlungsbedarf	sofort Maßnahmen treffen
B= mittleres Risiko / mittlerer Handlungsbedarf	zu beachten, mittelfristige Maßnahmen
C=geringes / tolerierbares Risiko	keine Maßnahmen notwendig

4.4 Maßnahmen zur Verbesserung der Umweltauswirkungen

Arbeitsmittel

Die Überprüfung der Abzüge wird jährlich im Rahmen eines Unterrichtsprojektes durchgeführt. Dieses Jahr erfolgte diese Überprüfung am 4. April 2022 von Vanessa Havlik und Dominik Baumann unter Betreuung von Matthias Parrini.

Energie

Strom, Heizkosten und Warmwasserverbrauch

Die Optimierung des Energieverbrauchs der Elektrogroßgeräte war Ziel einer Diplomarbeit und wurde 2018 abgeschlossen. In den letzten Jahren konnte immer wieder eine Verringerung der Heizkosten verzeichnet werden, die vor allem durch intensive Bewusstseinsbildung der Schülerinnen und Schüler erreicht wurde. Nach dem der Coronapandemie geschuldetem Anstieg im letzten Jahr konnten die Heizkosten nun wieder verringert werden.

Die Heizungsenergie wird durch Fernwärme (Hackschnitzel) gewonnen. Durch Installation mit einer neuen Regelungstechnik beziehungsweise durch eine Aufteilung des derzeitigen Heizungsstranges in mehrere unabhängig voneinander regelbaren Stränge würde sich laut Auskunft des ortsansässigen Installateurs eine weitere Optimierung ergeben. Dies ist jedoch aus finanziellen Gründen derzeit nicht machbar.

Abfall

Mülltrennung seit Jahren etabliert (gelber Sack, Glas; Papier, Restmüll). Die Schülerinnen und Schüler sind selbst dafür verantwortlich den Müll zu trennen und in die richtigen dafür vorgesehenen Abfallbehältnisse zu entsorgen. Weiters ist es auch ihre Aufgabe den Papier- und den Kunststoffabfall selbst zu den im Außenbereich gelagerten Müllcontainer zu bringen. In den Klassen befinden sich jeweils ein Behälter für Lebensmittelverpackungen (PET-Flaschen, Dosen, Kunststoffschalen, Plastikfolie, Chips-Sackerl, Milch- und Saftverpackungen, Desinfektionsmittelflaschen, Alufolie,...), ein Behälter für Papier und einer für Restmüll. Dadurch kommt es ab und an zu

Fehlwürfen. Diese kommen jedoch nur sehr selten vor und lassen sich kaum vermeiden. Durch Lehrpersonen, die Schulleitung und die Umweltverantwortlichen in den Klassen wird die richtige Entsorgung regelmäßig kontrolliert und wenn möglich auch korrigiert. In den Laboratorien wurde die Anzahl der gefährlichen Arbeitsmittel bereits deutlich reduziert. Der Prozess muss jedoch aufgrund der internationalen Neueinstufung der Chemikalien ständig fortgeführt werden. Die externe Entsorgung erfolgt durch ein zertifiziertes Entsorgungsunternehmen, die Firma Stark GmbH aus Irnfritz.

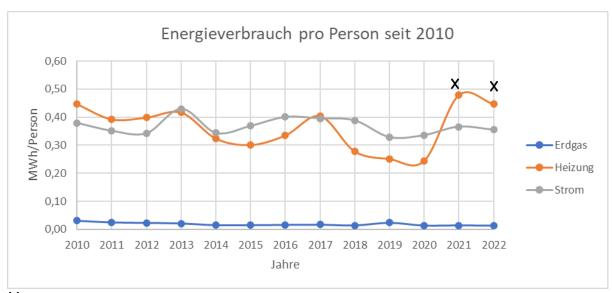
Interne Kommunikation, Umweltschulung

Digitales Laborkommunikationssystem, UMS-Schulung, Sicherheitsbelehrung im Labor

Im Rahmen einer Diplomarbeit wurden interne Schulinformationen über das Umweltmanagementsystem und das Abfallsystem im Labor für die ersten Klassen erstellt.

Diese Schulung wird vom jeweiligen UMS-Diplomarbeitsteam abgehalten. Eine weitere Schulung, die das Notfallverhalten erfasst, wurde ebenfalls erstellt und wird in
allen Klassen vom Schulsprecher durchgeführt. Im Jahr 2022 wurde als neuer Baustein für die Gewährleistung der Laborsicherheit von einem Diplomandenteam ein
Schulungsvideo mit dem Thema Laborsicherheit gedreht und online gestellt.

Kennzahlen und Kernindikatoren

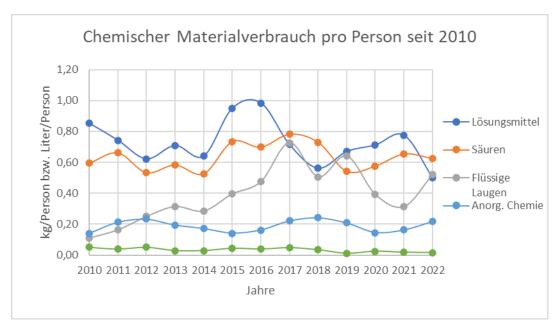

Legende	
p:	Problemstoffe
g.	Gefährlicher Abfall
SN:	Schlüsselnummer (Abfall) laut ÖNORM 2100
Umrechnungsfaktor	Erfasste Einheit * Umrechnungsfaktor = Angabeeinheit
Veränderung:	Vorjahreswert / aktueller Wert * 100%
Personenbezogener Wert:	Stellt den jeweiligen Input pro Person dar

Energieverbrauch	р	g	SN	Einheit	Umrechnungs- faktor	2019	2020	2021	2022	Veränderung 2021-2022	Personer	nbezogene	Einheit	
Zahl A											2020	2021	2022	
	Ī													
Heitzgradtage						2724,1	2750	3157,3	2811,6	-10,95%	14,40	16,53	14,64	
Strom				MWh		66,63	64,05	69,90	68,10	-2,58%	0,34	0,37	0,35	MWh/Person
Heizung				MWh		51,11	46,80	91,44	85,83	-6,14%	0,25	0,48	0,45	MWh/Person
Erdgas				MWh		4,783	2,624	2,748	2,580	-6,11%	0,01	0,01	0,01	MWh/Person
spez.klimabereinigte EKZ				Wh/Kd*m²		11,80	10,70	18,21	19,20	5,41%	0,06	0,10	0,10	son

Personenzahl	2019	2020	2021	2022	Veränderung 2020-2021	Bezugsgröße!
Lehrer/innen	27	28	28	28	0,00%	
Nichtlehrer-Personal	5	5	5	5	0,00%	Die Summe der Personenzahl des aktuellen Jahres ist die Bezugsgröße für
Schülerinnen	171	158	158	159	0,63%	die personenbezogenen Werte der folgenden Tabellen
Summe	203	191	191	192	0,52%	

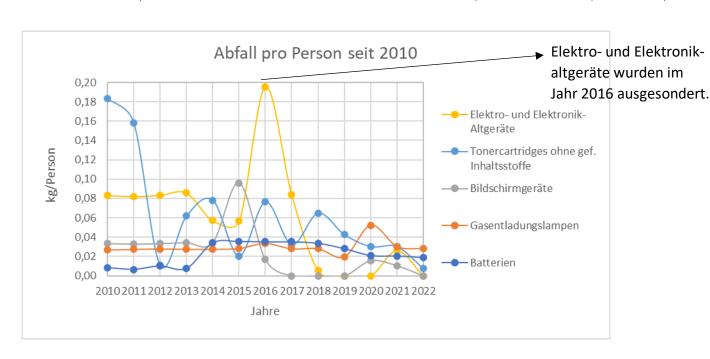
Spez. Klimabereinigte Energiekennzahl (EKZ) (Wh/Kd x m^2 =

= gemessener Verbrauch [Wh]/Heizgradtage x Nutzfläche [m²]



X....Covid-Pandemie: Luftpausen

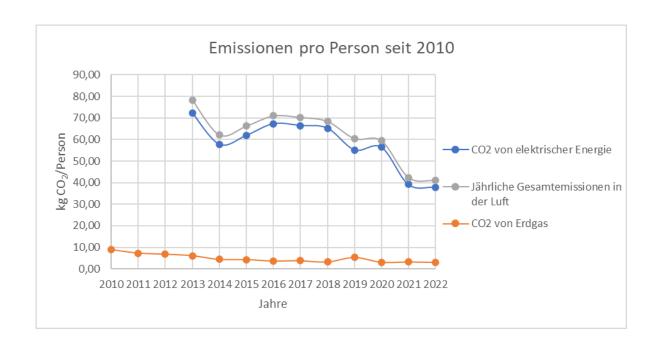
Materialverbrauch	р	g	SN	Einheit	Umrechnungs- faktor	2020	2021	2022	Veränderung 2021-2022	Persone	nbezogene	r Wert	Einheit
Zahl A										2020	2021	2022	
Druckerpapier A4				kg	0,005 kg/Blatt	350,00	400,00	400,00	0,00%	1,83	2,09	2,08	kg/Person
Whiteboardmarker				kg	0,03 kg/Stück	3,63	2,43	0,78	-67,90%	0,02	0,01	0,00	kg/Person
Toner				kg	0,72 kg/Stück	5,76	5,76	1,44	-75,00%	0,03	0,03	0,01	kg/Person
Batterien	р		35338	kg	0,03 kg/Batterie	4,20	3,90	3,60	-7,69%	0,02	0,02	0,02	kg/Person
Lösungsmittel				kg	0,8 kg/L	136,00	148,00	96,00	-35,14%	0,71	0,77	0,50	kg/Person
Säuren				Liter		110,00	125,00	120,00	-4,00%	0,58	0,65	0,63	L/Person
Laugen flüssig				Liter		75,00	60,00	100,00	66,67%	0,39	0,31	0,52	L/Person
Anorgan. Chem.				kg		27,70	31,00	41,90	35,16%	0,15	0,16	0,22	kg/Person
Organ. Chem.				kg		4,70	3,37	3,16	-6,23%	0,02	0,02	0,02	kg/Person
Nährböden				kg		27,50	7,00	6,50	-7,14%	0,14	0,04	0,03	kg/Person
Laborgase				Flaschen		5,00	3,50	7,50	114,29%	0,03	0,02	0,04	Flaschen/Person
Handreinigung				Liter		72,00	0,00	0,00	0,00%	0,38	0,00	0,00	L/Person
Handdesinfektion				Liter		41,00	31,00	52,00	67,74%	0,21	0,16	0,27	L/Person
Oberflächendesinfektion				kg		60,00	60,00	30,00	-50,00%	0,31	0,31	0,16	kg/Person
Geschirrspülmittel (Handwäsche)				Liter		99,00	87,00	113,00	29,89%	0,52	0,46	0,59	L/Person
Geschirrspülmittel (Maschinenreinigung)				Stk.		20,00	0,00	72,00	0,00%	0,10	0,00	0,38	Stk./Person
Bodenreinigung				Liter		70,00	200,00	70,00	-65,00%	0,37	1,05	0,36	L/Person
Bodendesinfektion				Liter		63,00	21,00	21,00	0,00%	0,33	0,11	0,11	L/Person



- *1 ungefährliche Chemikalien, welche Schulintern entsorgt werden.
- *2 werden alle 2 Jahre von einer externen Firma abgeholt.

Wasser	р	g	SN	Einheit	Umrechnungs- faktor	2019	2020	2021	2022	Veränderung 2021-2022	Personenbezogener Wert		Einheit	
Zahl A											2020	2021	2022	
Wasserverbrauch gesamt				m³		1338	1491	1338	1164	-13,00%	7,81	7,01	6,06	m³/Person

Abfall	р	g	SN	Einheit	Umrechnungs- faktor	2020	2021	2022	Veränderung 2021-2022	Personer	nbezogene	r Wert	Einheit
Zahl A										2020	2021	2022	
Althonias Danies and Danne													
Altpapier, Papier und Pappe, unbeschichtet			18718	ka	80kg/m³	360	440.0	440.0	0.00%	1,88	2,30	2.29	kg/Person
Siedlungsabfälle und ähnliche				9	o ang	000	, ,0,0	0,0	2,22.0	.,	_,55	_,	
Gewerbeabfälle (ehem. Restmüll)			91101	kg	100kg/m³	1760	2200,0	2200,0	0,00%	9,21	11,52	11,46	kg/Person
Gelber Sack			57118	•	30kg/m³	120	150,0	150,0	0,00%	0,63	0,79	0,78	kg/Person
Weißglas/Buntglas			31468	kg		186	190,0	192,0	1,05%	0,97	0,99	1,00	kg/Person
Batterien		g	35338	kg	0,03kg/Batterie	4,0	3,9	3,6	-7,69%	0,02	0,02	0,02	kg/Person
Gasentladungs-lampen													
(Leuchtstofflampen, Leuchtstoffröhren)	р		35339	kg	0,2kg/Stück	10	5,8	5,4	-6,90%	0,05	0,03	0,03	kg/Person
Bildschirmgeräte, einschließlich													
Bildröhrengeräte		g	35212	kg	3kg/Stück	3	2,0	0,0	-100,00%	0,02	0,01	0,00	kg/Person
Elektro- und Elektronik-Altgeräte,													
Kleingeräte mit einer Kantenlänge < 50													
cm			35231	kg	5kg/Stück	0	5,0	0,0	-100,00%	0,00	0,03	0,00	kg/Person
Tonercartridges ohne gefährliche													
Inhaltsstoffe			57129	kg	0,72kg/Stück	5,76	5,76	1,44	-0,75	0,03	0,03	0,01	kg/Person
Chemikalienreste und Laborabfälle ^{*1}		g	59305	Liter		0	1210,0	1260,0	4,13%	0,00	6,34	6,56	L/Person
gefährliche Abfälle,gesamt ^{*2}		g		kg		17,0	0,0	1455,0	100,00%	0,09	0,00	7,58	kg/Person



biologische Vielfalt	р	g	SN	Einheit	Umrechnungs- faktor	2020	2021	2022	Veränderung 2021-2022	Personer	nbezogene	r Wert	Einheit
Zahl A										2020	2021	2022	
Bebaute Fläche = Gesamtfläche Außenbereiche: sind der Bundes HTL zugeordnet)				m²		795	795	795	0,00%	4,16	4,16	4,14	m³/Person
•													
Emissionen	р	g	SN	Einheit	Umrechnungs- faktor	2020	2021	2022	Veränderung 2021-2022	Personer	nbezogene	r Wert	Einheit
	р	g	SN	Einheit		2020	2021	2022		Personer	nbezogene 2021	r Wert	Einheit
Emissionen Zahl A CO2 von Elektrischer Energie CO2 von Erdgas	р	g	SN	Einheit kg CO ₂ kg CO2		2020 10768,7 592,4	2021 7475,8 620,4	2022 7283,3 582,4	2021-2022 -2,58%		ŭ	2022 37,93	Einheit kg CO ₂ /Person kg CO ₂ /Person

Anmerkung: CO₂ aus Heizung – die Priv. HTL für Lebensmitteltechnologie wird durch Fernwärme geheizt. Wärmeenergie aus Biomassekraftwerken gilt als Emissionsfrei und hat kein CO₂-Äquivalent.

5 Gültigkeitserklärung und Zertifikate

Der leitende und zeichnungsberechtigte EMAS-Umweltgutachter

DI Dr. Kurt Kefer

der Umweltgutachterorganisation

TÜV SÜD Landesgesellschaft Österreich GmbH,

Franz-Grill-Straße 1, Objekt 207, 1030 Wien bestätigt, begutachtet zu haben, dass der Standort, wie in der Umwelterklärung der Organisation

Priv. HTL für Lebensmitteltechnologie

Anton Ehrenfriedstraße 10
A-2020 Hollabrunn
mit der Registriernummer AT 000705

angegeben, alle Anforderungen der Verordnung (EU) Nr. 1221/2009 des Europäischen Parlaments und des Rates vom 25. November 2009 über die freiwillige Teilnahme von Organisationen an einem Gemeinschaftssystem für Umweltmanagement und Umweltbetriebsprüfung (EMAS) erfüllt.

Mit der Unterzeichnung dieser Erklärung wird bestätigt, dass

- die Begutachtung und Validierung in voller Übereinstimmung mit den Anforderungen der Verordnung (EU) Nr. 1221/2009 in Verbindung mit Verordnung (EU) Nr. 1505/2017 in der Fassung der Verordnung (EU) Nr. 2026/2018 durchgeführt wurden,
- das Ergebnis der Begutachtung und Validierung bestätigt, dass keine Belege für die Nichteinhaltung der geltenden Umweltvorschriften vorliegen,

die Daten und Angaben der Umwelterklärung 2022 der Organisationen geben ein verlässliches, glaubhaftes und wahrheitsgetreues Bild sämtlicher Tätigkeiten des Standorts innerhalb des in der Umwelterklärung angegebenen Bereichs wieder.

Die Umweltgutachterorganisation TÜV SÜD Landesgesellschaft Österreich GmbH ist per Bescheid durch das Bundesministerium für Nachhaltigkeit und Tourismus für den 85.32 (NACE-Code) zugelassen.

Wien, am 10. Mai 2023

Landesgesellschaft Österreich

Leitender und zeichnungsberechtigter Umweltgutachter der TÜV SÜD Landesgesellschaft Österreich GmbH Franz-Grill-Straße 1, Arsenal, Objekt 207, A-1030 Wien

Die nächste Validierung der Umwelterklärung erfolgt 2024.

150 mool

6 Kontakt

Priv. HTL für Lebensmitteltechnologie Hollabrunn

Anton Ehrenfriedstraße 10 A-2020 Hollabrunn +432952/3361 500 infolt@htl-hl.ac.at

UMS-Koordinations-Beauftragter

Mag. Matthias Parrini PhD +432952/3361 500 matthias.parrini@htl-hl.ac.at

